
CS V sem Compiler Construction

Solution

Q1 (a) Why do we need syntax tree when constructing compilers ?

 (b) What are the fundamental differences between parse trees and abstract syntax trees ?

Solu

(a)

Need of Syntax tree in compilers

 Syntax tree is a way of representing the syntax of a programming language as a

hierarchical tree-like structure.

 It is used for generating symbol tables for compilers and later code generation.

 Syntax tree represents all of the constructs in the language and their subsequent rules.

 It helps to preserve variable types , as well as the location of each declaration in source

code.

 The order of executable statements must be explicitly represented and well defined.

 Left and right components of binary operations must be stored and correctly identified.

 Identifiers and their assigned values must be stored for assignment statements.

(b)

What is Parse Tree

A parse tree represents the syntactic structure of a string according to some context-free

grammar. It describes the syntax of the input language. A parse tree does not use distinct symbol

shapes for different types of constituents. The basis to construct a parse tree is phrase structure

grammars or dependency grammars. It is possible to generate parse trees for natural language

sentences and when processing programming languages.

https://pediaa.com/difference-between-regular-expression-and-context-free-grammar/#Context%20Free%20Grammar
https://pediaa.com/difference-between-regular-expression-and-context-free-grammar/#Context%20Free%20Grammar

Moreover, a phrase marker is a linguistic expression marked as to its phrase structure. A tree or a

bracketed expression represents it. Applying phrase structure rules to parse tree generates phrase

markers. A set of possible parse trees for a syntactically ambiguous sentence is a parse forest.

What is Syntax Tree

A syntax tree describes the abstract syntactic structure of source code written in a programming

language. It focuses on the rules rather than elements such as braces, semicolons that terminate

statements in some languages. Also, it is a hierarchy with the elements of programming

statements divided into several sections. The nodes of the tree signify a construct occurring in the

source code. It does not represent every detail in the real syntax; instead, it shows the structural

based and content-based details. Subsequent processing such as contextual analysis adds extra

information to the syntax tree.

Syntax tree helps to determine the accuracy of the compiler. If the syntax tree contains an error,

the compiler displays an error message. Program analysis and program transformation are some

other uses of the syntax tree.

Q 2 Write short notes on following

 a. operator precedence parser for regular expression

 b. difference between bottom up and top down parsing with example

 c. YACC error handling in LR parser.

 d. Context Free Grammar.

Solu

(a) Operator precedence parser –

An operator precedence parser is a one of the bottom-up parser that interprets an operator-

precedence grammar. This parser is only used for operator grammars. Ambiguous grammars are

not allowed in case of any parser except operator precedence parser.

There are two methods for determining what precedence relations should hold between a pair of

terminals:

1. Use the conventional associativity and precedence of operator.

2. The second method of selecting operator-precedence relations is first to construct an

unambiguous grammar for the language, a grammar that reflects the correct associativity

and precedence in its parse trees.

This parser relies on the following three precedence relations: ⋖, ≐, ⋗

a ⋖ b This means a “yields precedence to” b.

a ⋗ b This means a “takes precedence over” b.

a ≐ b This means a “has precedence as” b.

Figure – Operator precedence relation table for grammar E->E+E/E*E/id

There is not given any relation between id and id as id will not be compared and two variables

can not come side by side. There is also a disadvantage of this table as if we have n operators

than size of table will be n*n and complexity will be 0(n
2
). In order to increase the size of table,

use operator function table.

The operator precedence parsers usually do not store the precedence table with the relations;

rather they are implemented in a special way. Operator precedence parsers use precedence

functions that map terminal symbols to integers, and so the precedence relations between the

symbols are implemented by numerical comparison. The parsing table can be encoded by two

precedence functions f and g that map terminal symbols to integers. We select f and g such that:

1. f(a) < g(b) whenever a is precedence to b

2. f(a) = g(b) whenever a and b having precedence

3. f(a) > g(b) whenever a takes precedence over b

(b) Top-down vs Bottom-up Parsing

BASIS FOR

COMPARISON

TOP-DOWN PARSING BOTTOM-UP PARSING

Initiates from Root Leaves

Working Production is used to derive and check the

similarity in the string.

Starts from the token and then go

to the start symbol.

Uses Backtracking (sometimes) Handling

Strength Moderate More powerful

Producing a parser Simple Hard

Type of derivation Leftmost derivation Rightmost derivation

(d) Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rewriting rules (or productions) used to

generate patterns of strings.

A CFG consists of the following components:

 a set of terminal symbols, which are the characters of the alphabet that appear in the

strings generated by the grammar.

 a set of nonterminal symbols, which are placeholders for patterns of terminal symbols

that can be generated by the nonterminal symbols.

 a set of productions, which are rules for replacing (or rewriting) nonterminal symbols (on

the left side of the production) in a string with other nonterminal or terminal symbols (on

the right side of the production).

 a start symbol, which is a special nonterminal symbol that appears in the initial string

generated by the grammar.

To generate a string of terminal symbols from a CFG, we:

 Begin with a string consisting of the start symbol;

 Apply one of the productions with the start symbol on the left hand size, replacing the

start symbol with the right hand side of the production;

 Repeat the process of selecting nonterminal symbols in the string, and replacing them

with the right hand side of some corresponding production, until all nonterminals have

been replaced by terminal symbols.

Classification of Context Free Grammars

Context Free Grammars (CFG) can be classified on the basis of following two properties:

1) Based on number of strings it generates.

 If CFG is generating finite number of strings, then CFG is Non-Recursive (or the

grammar is said to be Non-recursive grammar)

 If CFG can generate infinite number of strings then the grammar is said to

be Recursive grammar

During Compilation, the parser uses the grammar of the language to make a parse tree(or

derivation tree) out of the source code. The grammar used must be unambiguous. An ambiguous

grammar must not be used for parsing.

2) Based on number of derivation trees.

 If there is only 1 derivation tree then the CFG is unambiguous.

If there are more than 1 derivation tree, then the CFG is ambiguous

Example:

L= {wcw
R
 | w € (a, b)*}

Production rules:

1. S → aSa

2. S → bSb

3. S → c

Now check that abbcbba string can be derived from the given CFG.

4. S ⇒ aSa

5. S ⇒ abSba

6. S ⇒ abbSbba

7. S ⇒ abbcbba

(C) Error Handling in Compiler Design

The tasks of the Error Handling process are to detect each error, report it to the user, and then

make some recover strategy and implement them to handle error. During this whole process

processing time of program should not be slow. An Error is the blank entries in the symbol

table.

Types or Sources of Error – There are two types of error: run-time and compile-time error:

1. A run-time error is an error which takes place during the execution of a program, and

usually happens because of adverse system parameters or invalid input data. The lack of

sufficient memory to run an application or a memory conflict with another program and

logical error are example of this. Logic errors, occur when executed code does not produce

the expected result. Logic errors are best handled by meticulous program debugging.

2. Compile-time errors rises at compile time, before execution of the program. Syntax error

or missing file reference that prevents the program from successfully compiling is the

example of this.

YACC

Yacc is also capable of more sophisticated error-handling. For example, we can tell the parser to

discard some of the subsequent tokens, too, simply by putting a token after the error token.

https://www.geeksforgeeks.org/ambiguous-grammar/

menu_command : label default EXEC '\n'

 | label default olvwm_cmd '\n'

 | label default olvwm_cmd_arg '\n'

 | label error '\n'

 { printf("Invalid menu item (%s) at line %d is invalid\n",

 $1,@1.first_line);

 }

 ;

In this case, the parser

 Discards everything on the stack going back to the label token

 Keeps reading tokens up till the next '\n', and discards them, too.

 Uses the tokens label error and '\n' to complete the rule for menu_command.

In this case, the rule

 label error '\n'

is not much different to just having

 error '\n'

except that the former lets us make use of the value of label to give a more informative error

message.

This approach is often used when there a "balanced" symbols in the syntax. Consider the rule:

label : LABEL

 | '<' LABEL '>'

 { $$=$2; }

 | '<' error '>'

 { printf("Bad icon-label at line %d\n",

 @1.first_line);

 }

 ;

If the parser encounters something other than a LABEL after a '<', it will discard all tokens up to

the next '>'. This technique can be useful for keeping brackets balanced during error-recovery.

In our case, keep in mind that any unidentifiable text after a valid LABEL is converted to

an EXEC token by the lexer, and the EXEC token would swallow any subsequent '>'. So this rule

in unlikely to trap any real errors, except something like < keyword >

In fact, it is likely to work against us, because we may not see another '>' at all, so we will miss

out on a lot of input!

Q 3 Construct the following grammar

 E → E + T / T

 T → T * F / F

 F → (E) / id

 a. Construct the first and follow sets

 b. create LL(1) Parsing table

 c. Construct LR Parsing table

 d. Using LR parsing table , check whether id + id * id belongs to this grammar or not ,

 Explain step by step procedure

Solu

(a)

(b)

(c)

(d)

